ICH S11 - Nonclinical Safety Testing in Support of Development of Paediatric Medicines

Step 2 document – to be released for comments

October 12, 2018

International Council for Harmonisation of Technical Requirements for Pharmaceuticals for Human Use

Legal Notice

• This presentation is protected by copyright and may be used, reproduced, incorporated into other works, adapted, modified, translated or distributed under a public license provided that ICH's copyright in the presentation is acknowledged at all times. In case of any adaption, modification or translation of the presentation, reasonable steps must be taken to clearly label, demarcate or otherwise identify that changes were made to or based on the original presentation. Any impression that the adaption, modification or translation of the original presentation is endorsed or sponsored by the ICH must be avoided.

• The presentation is provided “as is” without warranty of any kind. In no event shall the ICH or the authors of the original presentation be liable for any claim, damages or other liability arising from the use of the presentation.

• The above-mentioned permissions do not apply to content supplied by third parties. Therefore, for documents where the copyright vests in a third party, permission for reproduction must be obtained from this copyright holder.
Background

- This document has been signed off as a **Step 2** document (September, 2018) to be issued by the ICH Regulatory Members for public consultation
- This document was developed based on a Concept Paper and a Business Plan (both approved November, 2014)
- Anticipating finalization as a **Step 4** document to be implemented in the local regional regulatory system: November 2019

Concept Paper - 2014

- Status quo: Several regional guidelines/guidances on nonclinical testing in support of development of pediatric guidances, no harmonised guideline
- Specific issues identified
 - Lack of harmonised criteria for determining when all previous animal data (juvenile and adult) and human safety data are considered sufficient to support paediatric clinical trials
 - Lack of harmonisation of the design of juvenile animal studies
 - No guidelines describe in detail the nonclinical studies that need to be conducted to support a paediatric-only development

See also S11 Concept Paper:
Business Plan - 2014

• What are the benefits to the key stakeholders of generating a new guideline?
 ▪ Guideline will streamline the drug development
 ▪ Unnecessary use of animals will be minimised (3Rs)
 ▪ Guideline will provide a harmonised approach on the need and design of juvenile animal studies
 ▪ Data from juvenile animal studies will be of higher quality and more informative to the safety of paediatric clinical trials
• Planned timeline was to reach Step 2b in 2016 - delayed due to complexity of issues

See also S11 Business Plan:

Gathering the underlying data

• Collection and evaluation of existing nonclinical data for paediatric development (blinded data)
 ▪ industry survey from Japan, US and EU
 ▪ EMA analysis of CNS and oncology drugs
 ▪ FDA analysis of all therapeutic areas
• Comprehensive literature review

1 oncology drugs are published on EMA website:
Table of Contents

Section 1 Introduction: objectives, scope and general principles
Section 2 Determining the need for additional nonclinical safety investigations: weight of evidence approach
Section 3 Design of nonclinical juvenile animal studies: core and additional endpoints
Section 4 Considerations for paediatric-first/only development
Section 5 Other considerations: excipients and combination pharmaceuticals
Appendices A, B and C

Section 1: Objectives and Scope

• **Objective:** Support development of safe paediatric medicines, facilitate the conduct of paediatric clinical trials, and reduce the use of animals (3Rs principles)

• **Scope**
 - Drugs intended for paediatric use
 - ICH S9 determines need for nonclinical information for paediatric anticancer pharmaceuticals, S11 provides study design considerations
 - Excluded: tissue-engineered products, gene and cellular therapies, and vaccines
Section 1: General principles

- Paediatric patients are not small adults - they are a different population compared with adults.
- Understanding of the overall clinical development plan is needed to design an appropriate and efficient nonclinical program.
- Early consideration of nonclinical support for paediatric medicine development is recommended. Think about changing the design and/or timing of the traditional nonclinical program → e.g. use of data from reproductive toxicity studies.
- Prior to each paediatric clinical trial: weight of evidence (WoE) evaluation should be conducted → would additional nonclinical investigations have added value?

Section 2: Determining the need for additional nonclinical safety investigations

- Weight of evidence (WoE) approach = integrated assessment

Based on:
- Clinical context: indication, intended paediatric age group, treatment regimen, and ability to clinically monitor and/or manage identified safety concerns
- Pharmacology and Pharmacokinetics (ADME)
- Existing nonclinical (in vitro and in vivo data) and clinical safety data
- Feasibility
Application of the WoE approach

WoE Factors

<table>
<thead>
<tr>
<th>Factor</th>
<th>Youngest Intended Patient Age</th>
<th>Effects on Developing Organ Systems</th>
<th>Pharmacologic Target Has Role in Organ Development</th>
<th>Modality of Pharmaceutical</th>
<th>Clinical Treatment Duration</th>
<th>Amount/Type of Existing Data</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Neonates 2 yr</td>
<td>4 yr</td>
<td>6 yr</td>
<td>8 yr</td>
<td>12+ yr</td>
<td>Yes/Unknown</td>
</tr>
<tr>
<td></td>
<td>Long-term Use</td>
<td>Short-term Use</td>
<td>No Nonclinical or Clinical Data</td>
<td>Adult Nonclinical Only</td>
<td>Adult Clinical</td>
<td>Pediatric Clinical</td>
</tr>
</tbody>
</table>

- Blue: most important factors
- White: factors are not listed in order of weight
- Arrows indicate a gradient for the weight of each factor
- List is not complete, can be extended as desired

Section 3: Design of JAS (I)

- **Guideline recommends a customised JAS**
 - core endpoints to be evaluated in all studies
 - additional endpoints are added when needed to address identified safety concerns.

- **JAS design including all additional endpoints is not recommended without a rationale.**

- **Understanding the level of maturity and function of organ systems across species during their development is needed (see Appendix A)**
 - To design an appropriate JAS
 - For the translation of nonclinical toxicity findings to a specific human age range
Section 3: Design of JAS (II)

- Dose-Range-Finding (DRF) studies
- Species selection - Appendix A: advantages/disadvantages of species use in JAS
- Age of animals at dosing
- Off-treatment period: should be included to understand persistence, progression, reversibility or delayed onset of a specific effect
- Route of administration
- Dose selection: a dose-response relationship and a no-observed adverse effect level (NOAEL) should be established

Section 3: Design of JAS (III)

- Core endpoints: general standard for a JAS: mortality and clinical signs, growth (body weight + long bone length), food consumption, sexual development, clinical pathology (serum chemistry and haematology), anatomic pathology (gross pathology, organ weights, major organ histopathology), and toxicokinetics
- Additional endpoints: driven by identified safety concerns e.g. ophthalmologic examinations, CNS and reproductive assessments, expanded histopathology
- Allocation of animals to study groups – rodent examples provided in Appendix C
Section 4: Paediatric-first/ Paediatric-only

• Special criteria are described when drug will be administered to paediatric patients without any prior adult data: two JAS are recommended (rodent and non-rodent)

• Juvenile primate study to be conducted only in exceptional cases
 o Alternative approaches (in vitro assays, genetically-modified animals, surrogate molecules) should be considered
 o Post-weaning juvenile NHP (9-12 months of age) when it is the only relevant species and needed for paediatric first/only
 o Pre-weaning NHP limited primarily to neonatal use when there are no alternatives

Section 5: Other considerations

• Excipients
 o Separate studies generally not recommended, but safety should be assessed.

• Combination pharmaceuticals
 o Considerations similar to those for supporting combinations in adults.
 o Studies of combination only or of combination in an additional arm of a study of individual drug may be sufficient if warranted.
Appendices

• Appendix A
 o Overview of age-dependent development of organ systems by species
 o Principle advantages and disadvantages of mammalian species for use in juvenile animal studies

• Appendix B: Case studies applying the weight of evidence approach

• Appendix C: Example of an approach to rodent preweaning litter allocation

Conclusions

• Agreement on limited request for JAS (based on WoE)

• When needed, the JAS study design should contain core endpoints, with additional endpoints added to address identified safety concerns
Contact

• For any questions please contact the ICH Secretariat:

admin@ich.org