Implementation of ICH Q8, Q9, Q10

Content

- ICH Q-IWG Integrated Training Programme
- Quality Risk Management (ICH Q9)
- How ICH Q8, Q9, Q10 guidelines are working together throughout the product life cycle
Implementation of ICH Q8, Q9, Q10

ICH Q-IWG
Integrated Training
Programme

J.-L. Robert, Q-IWG Rapporteur

International Conference on Harmonisation of Technical
Requirements for Registration of Pharmaceuticals for Human Use

Disclaimer

The information within this presentation is based on the ICH Q-IWG members expertise and experience, and represents the views of the ICH Q-IWG members for the purposes of a training workshop.
ICH: 20 years process (1)

- **Start in 1990 (Brussels)**
- **Objective of ICH:**
 Technical and scientific harmonisation between Japan, Europe and USA.
- **Scope:**
 New chemical entities and biotechnology derived products
- **Sponsors:**
 - Regulators: EU, FDA, MHLW
 - Industry: EFPIA, JPMA, PhRMA
- **Observers:**
 - EFTA, Health Canada, WHO
- **Steering Committee**

ICH: 20 years process (2)

- 1990: Pharmacopoeial Discussion Group
 - EP, JP, USP, WHO
- 1997: Interested Parties: IGPA, WSMI
- 1999: Global Cooperation Group
 - 2004 RHIs: APEC, ASEAN, GCC, PANDRH, GCG
 - 2008 DRAs: Australia, Brazil, China, India, Russia, Singapore, South Korea
 - 2008: DoH: Chinese Taipei
- 2003: Quality New Paradigm
- 2006: Biotech Industry
- **2010: ICH Training: Implementation Q8, Q9, Q10**
Achieved so far (1)

• Areas
 - Quality, Safety, Efficacy
 - Multidisciplinary areas, MedDRA, e-submission,…..

• Initial ICH Quality topics
 - Scientific/technical guidelines mostly:
 Stability, Method Validation, Impurities, Specifications, Q5 series (Biological)
 - System oriented: GMP for APIs
 - Structure: Common Technical Document

Quality: A New Paradigm

Develop a harmonised pharmaceutical quality system applicable across the lifecycle of the product emphasizing an integrated approach to quality risk management and science (Brussels July 2003)

- Q8: Pharmaceutical Development
- Q8 (R2): Pharmaceutical Development Revision
- Q9: Quality Risk Management
- Q10: Pharmaceutical Quality System
- Q11: Development and Manufacture of Drug Substances (chemical/biological entities): in progress
Quality: A New Paradigm

Main message

Science is no longer isolated; it is living across the lifecycle of the product/process within a Quality Management System

The new paradigm emphasize:

1. Quality must be mainly built in and it will not only improve by additional testing and inspection
2. Better utilization of modern science throughout product lifecycle
3. QRM is a key enabler throughout product lifecycle
4. Robust PQS, with appropriate knowledge management, assures quality throughout product life cycle
5. An integrated approach to development, manufacturing and quality for both industry and regulators
Implementation WG on Q8, Q9, Q10

• Task of IWG Q8, Q9, Q10:
 - “….due primarily to departure from the traditional approaches to quality guidance, proper implementation of these concepts is provided by bringing clarity, further explanation and removing ambiguities and uncertainties”.
 - Technical issues & related documentation:
 - Additional implementation issues: influence on existing ICH guidelines;
 - Communication and training

• Unique training programme for industry and regulators (assessors and inspectors) in the three regions:
 - Tallinn June 2-4, 2010
 - Washington October 6-8, 2010
 - Tokyo October 25-27, 2010

Structure of Washington Training

• Plenary presentations
 - Lifecycle of a drug product
 - Development, Assessment, Manufacturing, Inspection

• Breakout sessions
 - Design Space
 - Control Strategy
 - Pharmaceutical Quality System
 - Quality Risk Management

• Conclusions and next steps
ICH Q-IWG Integrated Training Programme

Training on Implementation of Q8, Q9, Q10

• Training based on a case study.
• Integrated implementation of Q8, Q9, Q10 and application to drug products and related operations
• Opportunity for open dialogue between Regulators and Industry.
• Feedback from the workshops will be used to further facilitate the understanding and implementation of ICH Q8, Q9 and Q10.

Acknowledgement

This presentation has been developed by members of the ICH Quality Implementation Working Group (Q-IWG)

- Jean-Louis Robert (rapporteur)
- Diana Amador-Toro
- Robert G. Baum
- Nicholas Cappuccino
- David Cockburn
- Georges France
- Richard L. Friedman
- Nigel Hamilton
- Hirotada Nagai
- Yukio Hiyama
- Fusashi Ishikawa
- Takao Kiyohara
- Urs Kopp
- Akira Kusai
- Yoshihiro Matsuda
- Motoaki Mitsuki
- Elaine Morefield
- Jacques Morénas
- Masatoshi Morisue
- Markus-Peter Müller
- Tamiji Nakanishi
- Moheb Nasr
- Kazuhiro Okochi
- Anthony Ridgway
- Rachael Roehrig
- Stephan Rönninger
- Swroop Sahota
- Hideki Sasaki
- Tetsuhito Takarada
- Shigeki Tamura
- Krishnan Tirunellai
- Mats Welin
- Jean M. Wyvratt
- A J van Zyl
For details please visit the ICH homepage

- Go to
 - Q-Section
 - Quality Risk Management (ICH Q9)
 - ICH Q9 Briefing pack

- Direct link:
Implementation of ICH Q8, Q9, Q10

How ICH Q8, Q9, Q10 guidelines are working together throughout the product life cycle

Disclaimer

The information within this presentation is based on the ICH Q-IWG members expertise and experience, and represents the views of the ICH Q-IWG members for the purposes of a training workshop.
Outline

• Workshop Goals and Objectives
• ICH Q8, Q9 & Q10
• How the guidelines are working together throughout the product life cycle
• Utility of ICH Q8, Q9 & Q10
• Key messages
• Conclusion

Workshop Goals and Objectives

• This presentation is intended to outline the linkage between Q 8, 9 & 10 and how the guidelines are working together
• This presentation is NOT intended to outline regulatory expectations (assessment and/or inspection)
• This workshop will:
 - Provide training on the integrated implementation of Q 8, Q9 and Q10
 - Allow participants to share implementation strategies and experiences
 - Seek participants’ input and identify implementation issue and concerns
ICH Q8, Q9 and Q10

- High level guidances (not prescriptive)
- Science and risk-based
- Encourages systematic approaches
- Applicable over entire product lifecycle
- Intended to work together to enhance pharmaceutical product quality

Pharmaceutical Development - Q8(R2)

- Describes science and risk-based approaches for pharmaceutical product and manufacturing process development
- Introduced concepts of design space and flexible regulatory approaches
- Introduced concepts of Quality by Design (QbD) and provided examples of QbD development approaches and design space
ICH Quality Implementation Working Group: Integrated Implementation Training Workshop

How ICH Q8, Q9, Q10 guidelines are working together throughout the product life cycle

Q8(R2) - Example QbD Approach

- Quality Target Product Profile (QTPP)
- Determine “potential” critical quality attributes (CQAs)
- Link raw material attributes and process parameters to CQAs and perform risk assessment
- Develop a design space *(optional and not required)*
- Design and implement a control strategy
- Manage product lifecycle, including continual improvement

Quality Risk Management – Q9

- Describes systematic processes for the assessment, control, communication and review of quality risks
- Applies over product lifecycle: development, manufacturing and distribution
- Includes principles, methodologies and examples of tools for quality risk management
- Assessment of risk to quality should:
 - Be based on scientific knowledge
 - Link to the protection of the patient
 - Extend over the lifecycle of the product
How ICH Q8, Q9, Q10 guidelines are working together throughout the product life cycle

Quality Risk Management Process - Q9

- Process Development
- Control Strategy Development
- Continual Improvement of the product

Pharmaceutical Quality System - Q10

- Describes key systems that facilitate establishment and maintenance of a state of control for process performance and product quality
- Facilitates continual improvement
- Applies to drug substance and drug product throughout product lifecycle
- Sound pharmaceutical development (Q8R(2)) in combination with a robust PQS (Q10) provide opportunities for flexible regulatory approaches. Relevant PQS elements include systems for:
 - Track and trend product quality
 - Maintain and update models as needed
 - Internally verify that process changes are successful
How ICH Q8, Q9, Q10 guidelines are working together throughout the product life cycle

Pharmaceutical Quality System - Q10

Formulation Activities:
- QTPP Definition
- Pre-Formulation Studies
- Formulation Screening
- Optimization & Selection

Process Development Activities:
- Process Screening
- Lab Scale Development
- Scale-Up Studies

Manufacturing Activities:
- Commercial Scale Manufacturing
- Batch Release
- Continual Verification & Improvement

ICH Q8, Q9 and Q10 Working Together
How can the three guidelines work together

- The following four slides (slides 14-17) are intended to show how Q8, Q9, Q10 can work together at different stages of the product lifecycle.

- It is important to note that they are NOT intended to show complete activities at each stage NOR to show the exact timing (stage) for those activities.
How ICH Q8, Q9, Q10 guidelines are working together throughout the product life cycle

Process Development Activities

<table>
<thead>
<tr>
<th>ICH Q8(R2) – Pharmaceutical Development Related Activities</th>
<th>ICH Q9 – QRM Related Activities</th>
<th>ICH Q10 – PQS Related Integrated Activities</th>
</tr>
</thead>
<tbody>
<tr>
<td>Process Screening</td>
<td>* Determine failure modes, risk factors for unit operations and rank risk</td>
<td>* Batch records and operational guidelines for manufacturing</td>
</tr>
<tr>
<td>Process Development and Optimization (Lab Scale)</td>
<td>* Screening risk assessment to determine potential parameters impacting product quality (e.g., Ishikawa)</td>
<td>* Tech Transfer report</td>
</tr>
<tr>
<td></td>
<td>* Determine critical process steps, process parameters and material attributes (e.g., FMEA)</td>
<td>* Identification and selection of suppliers that meet raw material needs</td>
</tr>
<tr>
<td></td>
<td>* Potential issues of scale</td>
<td></td>
</tr>
<tr>
<td>Process Development and Optimization (Pilot Scale)</td>
<td>* Pilot to verify lab scale knowledge</td>
<td>* Development of control strategy to control risks incl. for scale up</td>
</tr>
<tr>
<td></td>
<td>* DOE and modeling effects of scale</td>
<td></td>
</tr>
<tr>
<td></td>
<td>* Development of on-line measurement technologies</td>
<td></td>
</tr>
</tbody>
</table>

Technology Transfer

<table>
<thead>
<tr>
<th>ICH Q8(R2) – Pharmaceutical Development Related Activities</th>
<th>ICH Q9 – QRM Related Activities</th>
<th>ICH Q10 – PQS Related Integrated Activities</th>
</tr>
</thead>
<tbody>
<tr>
<td>* Gain product and process knowledge</td>
<td>* Forms the basis for the manufacturing process</td>
<td>* Advance understanding through scale-up activities</td>
</tr>
<tr>
<td>* Knowledge supports transfer between development and manufacturing to achieve product realization</td>
<td>* Improves effectiveness of control strategy</td>
<td>* Provide preliminary indication of process performance and successful integration into manufacturing</td>
</tr>
<tr>
<td></td>
<td>* Contributes to processes validation and ongoing continual improvement</td>
<td>* Gain knowledge from transfer and scale up activities to enhance the basis for the control strategy</td>
</tr>
</tbody>
</table>
ICH Quality Implementation Working Group - Integrated Implementation Training Workshop

How ICH Q8, Q9, Q10 guidelines are working together throughout the product life cycle

Commercial Manufacturing Activities

<table>
<thead>
<tr>
<th>ICH Q8(R2) – Pharmaceutical Development Related Activities</th>
<th>ICH Q9 – QRM Related Activities</th>
<th>ICH Q10 – PQS Related Integrated Activities</th>
</tr>
</thead>
<tbody>
<tr>
<td>Commercial Scale Manufacturing for Drug Product</td>
<td>• Definition of commercial process design</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Commercial scale runs to verify process design, with additional sampling to verify understanding</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Implementation of on-line measurement technologies</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Development of a control strategy for commercial manufacturing, including in-process controls, end-product testing, raw material controls and change control</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Check procedures in the PQS regarding risk from Process specific procedure (e.g., sampling plans, design space and model verification, change control for movement within design space)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Process-specific operating procedures (e.g., sampling plans, design space etc.)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Documentation to support on-line testing methods</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Validation to demonstrate process and analytical method reproducibility</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Storage of development reports, risk assessments</td>
<td></td>
</tr>
</tbody>
</table>

Continual Process Verification and Continual Improvement

| • On-going analysis and trending of process data, (multivariate SPC, etc.) |
| • Evaluation of process changes and associated effect on intermediates and products |
| • Manage risks of process or material attribute change (including changes within or outside of design space) |
| • Review risks in audits/inspections and implement risk-based CAPAs |
| • Procedures on process monitoring and action limits |
| • Change control procedures including how and when to do risk assessment for process changes and evaluation of the change |
| • Maintenance and update of knowledge management |

The Utility of ICH Q8, 9 &10

• The implementation of Q8, 9 &10 is valuable for all drug products, pharmaceutical development approaches and regulatory systems
 - New/innovator, marketed/legacy and generics
 - Simple and complex dosage forms
 - Small molecule and biotech
 - Traditional development and QbD
 - Within and outside ICH regions

• Good scientific development (Q8) in combination with QRM (Q9) and PQS (Q10) will improve drug quality and efficiency of pharmaceutical manufacturing
 - Quality is important for all drug products throughout product lifecycle (new, legacy and generics)
Key Messages

• ICH Q8, Q9 and Q10 are linked together to provide a systematic, modern risk- and science-based approach to pharmaceutical manufacturing and development

• Comprehensive implementation of the three guidelines together is essential to achieve ICH Quality Vision
 - Guidelines are applicable over entire product lifecycle

• Guidelines can be utilized by all stakeholders
 - Industry and regulators
 - Assessor and inspectors are expected to incorporate QRM during regulatory processes

Key Messages

• Traditional development approaches, as outlined in ICH Q8(R2) part I, are acceptable
 - Enhanced approaches (QbD) provide higher assurance of product quality and additional opportunities for manufacturing efficiency and flexibility

• The use of quality risk management process, methodologies and tools (Q9) is beneficial regardless of development or manufacturing approaches used

• Pharmaceutical Quality Systems (Q10) applies to drug substance and drug product throughout product lifecycle and provide tools to facilitates continual improvement
Conclusions

• Workshop materials, plenary presentations, and breakout discussions will provide useful information to facilitate pharmaceutical development and manufacturing, and related regulatory aspects
 - Training materials provide only illustrative examples
 - Training materials are not intended to serve as templates for pharmaceutical development, manufacturing, regulatory assessment or inspection
 - Depending of the pharmaceutical product, other approaches might be appropriate

Conclusions

• The main goal of this workshop is to provide training on the comprehensive implementation of Q8, Q9 and Q10

• Workshop feedback will be utilized by IWG to further improve the implementation for the new paradigm of pharmaceutical quality
How ICH Q8, Q9, Q10 guidelines are working together throughout the product life cycle

Acknowledgement

This presentation has been developed by members of the ICH Quality Implementation Working Group (Q-IWG)

- Jean-Louis Robert (rapporteur)
- Diana Amador-Toro
- Robert G. Baum
- Nicholas Cappuccino
- David Cockburn
- Georges France
- Richard L. Friedman
- Nigel Hamilton
- Hirotada Nagai
- Yukio Hiyama
- Fusashi Ishikawa
- Takao Kiyohara
- Urs Kopp
- Akira Kusai
- Yoshiiro Matsuda
- Motoaki Mitsuki
- Elaine Morefield
- Jacques Morénas
- Masatoshi Morisue
- Markus-Peter Müller
- Tamiji Nakanishi
- Moheb Nasr
- Kazuhiro Okochi
- Anthony Ridgway
- Rachael Roehrig
- Stephan Rönninger
- Swroop Sahota
- Hideki Sasaki
- Tetsuhiro Takarada
- Shigeki Tamura
- Krishnan Tirunellai
- Mats Welin
- Jean M. Wyvratt
- A J van Zyl