List of Abbreviations

ANOVA Analysis of Variance
AUC Area under the plasma concentration-time curve
$\text{AUC}_{0\rightarrow t}$ Area under the plasma concentration-time curve from zero (0) hours to time (t)
$\text{AUC}_{0\rightarrow \infty}$ Area under the plasma concentration-time curve from zero (0) hours to infinity (∞)
$\text{AUC}_{0\rightarrow T_{SS}}$ Area under the plasma concentration-time curve (from time zero (0) to dosing interval) at Steady-state.
FDA Food and Drug Administration
C_{avgss} Average concentration at steady state.
GCC Gulf Cooperation Council
GCP Good Clinical Practice
GLP Good Laboratory Practice
C_{max} Maximum drug concentration
C_{maxss} Maximum concentration at steady state
C_{minss} Minimum concentration at steady state.
IRB Institutional Review Board
Log Logarithmic
% Fluctuation percent peak-trough fluctuation
T_{max} Time of maximum concentration
T_{maxss} Time to maximum concentration at steady state
$T_{1/2}$ Terminal elimination half life
λ_{z} Terminal elimination rate constant
I. OBJECTIVES OF THE GUIDELINES

The interchangeability of pharmaceutically equivalent drug products is a matter of concern to health authorities in Saudi Arabia as well as other members of the GCC countries. This can be attributed to the increasing international drug trade, facilitated import and export in the GCC countries in addition to the increasing number of locally produced products. Interest in bioavailability and bioequivalence of pharmaceutical products lies within the general frame of concern for safety and efficacy of these products. Over the past 25 years it has become evident that marketed products having the same amounts of the drug chemical entity may exhibit marked differences between their therapeutic responses. In many cases, these differences were correlated to dissimilar drug blood levels caused mainly by impaired absorption.

In view of the importance of the process of drug absorption as a direct determinant of drug efficacy and safety, and since bioavailability determination has not yet been adopted by official compendia as an efficacy-indicating test, it is necessary to define a general scientific framework, including basic methodology, ethical principles as well as regulatory aspects for the conduct of bioavailability studies, so that optimal and relevant data are generated. Such guidelines for planning and evaluating drug bioavailability/bioequivalence studies should facilitate the task of a pharmaceutical company, or others, wishing to carry out bioavailability studies.

The present guidelines have been prepared taking into consideration the need for worldwide harmonization, and at the same time the specific needs for the GCC countries. For example, in many countries of the region laboratory units for conducting bioequivalence studies are of very limited number and not yet fully developed. However, it is anticipated that very soon such advanced units will be emerging. Therefore, one section of the guidelines deals with the specifications of laboratory units conducting these studies. Their strict adherence to these specifications can be the subject for future inspection, accreditation or certification by drug regulatory agencies. In addition, another section of the guidelines deals with the format and contents of bioequivalence reports. These aspects deem necessary when constructing guidelines for countries of this region.
II. INTRODUCTION

Multi-source drug products need to conform to the same standards of quality, efficacy and safety required of the originator’s product. In addition, reasonable assurance must be provided that they are, as intended, clinically interchangeable with nominally equivalent market products.

With some classes of products, including most evidently parenteral formulations of highly water-soluble compounds, interchangeability is adequately assured by implementation of Good Manufacturing Practices and evidence of conformity with relevant pharmacopoeial specifications. For other classes of products, including biologicals such as vaccines, animal sera, products derived from human blood and plasma, and products manufactured by biotechnology, the concept of interchangeability raises complex considerations that are not addressed in this document, and these products are consequently excluded from consideration. However, for most nominally equivalent pharmaceutical products (including most solid oral dosage forms), a demonstration of therapeutic equivalence can and should be carried out, and such assessment should be included in the documentation for marketing authorization.

This guideline refers to the marketing of pharmaceutical products that are intended to be therapeutically equivalent, and thus interchangeable, but produced by different manufacturers.

III. DEFINITION OF TERMS

Explanation of certain pertinent terminology described below will facilitate the discussions on the approaches to the assessment of bioequivalence.

Bioavailability

Bioavailability means the rate and extent to which the active drug substance or therapeutic moiety is absorbed from a pharmaceutical form and becomes available at the site of action. For drugs intended to exhibit a systemic therapeutic effect, bioavailability can be more simply understood as the rate and extent to which a substance or its therapeutic moiety is delivered from a pharmaceutical form into the general circulation. Indeed, in the case of such
drugs, the substance in the general circulation is in exchange with the substance at the site of action.

Pharmaceutical equivalent

It refers to drug products, which contain the same active ingredient in the same strength (concentration) and dosage form, and is intended for the same route of administration. In general, it has the same labeling and meets compendial and other standards of strength, quality, purity, and identity.

Pharmaceutical equivalent does not necessarily imply therapeutic equivalence as differences in the excipients and/or the manufacturing process can lead to differences in product performance.

Pharmaceutical Alternatives

Drug products are considered pharmaceutical alternatives if they contain the same therapeutic moiety, but are different salts, esters, or complexes of that moiety, or are different dosage forms or strengths. Different dosage forms and strengths within a product line by a single manufacturer are thus pharmaceutical alternatives, as are extended-release products when compared with immediate- or standard-release formulations of the same active ingredients.

Bioequivalence

Is defined as “the absence of a significant difference in the rate and extent to which the active ingredient or active moiety in pharmaceutical equivalents or pharmaceutical alternatives becomes available at the site of drug action when administered at the same molar dose under similar conditions in an appropriately designed study”.

Therapeutic equivalence

Two pharmaceutical products are therapeutically equivalent if they are pharmaceutically equivalent and after administration in the same molar dose their effects, with respect to both efficacy and safety, will be essentially the same as can be derived from appropriate studies (bioequivalence, pharmacodynamic, clinical or in-vitro studies). Therapeutically equivalent drug products are interchangeable.
Generic product

The term “generic product” has somewhat different meanings in different jurisdictions. Generic products may be marketed either under the nonproprietary approved name or under a new brand (proprietary) name. They may sometimes be marketed in dosage forms and/or strengths different from those of the innovator products. However, where the term “generic product” had to be used in this document it means a pharmaceutical product, usually intended to be interchangeable with the innovator product, which is usually manufactured without a license from the innovator company and marketed after expiry of patent or other exclusivity rights.

Innovator pharmaceutical product

Generally, the innovator pharmaceutical product is that which was authorized for marketing (normally as a patented drug) on the basis of documentation of efficacy, safety and quality (according to contemporary requirements).

In the case of drugs, which have been available for many years, it may not be possible to identify an innovator pharmaceutical product.

Interchangeable pharmaceutical product

An interchangeable pharmaceutical product is one, which is therapeutically equivalent to a reference product.

Multi-source pharmaceutical products

Multi-source pharmaceutical products are pharmaceutically equivalent products that may or may not be therapeutically equivalent. Multi-source pharmaceutical products that are therapeutically equivalent are interchangeable.

Reference product

A reference product is a pharmaceutical product with which the new product is intended to be interchangeable in clinical practice. The reference product would normally be the innovator product for which efficacy, safety and quality have been established. When the innovator product is not available the product which is the word market leader may be used as a reference product, provided that it has been authorized for marketing and its efficacy, safety and quality have been established and documented.
IV EQUIVALENCE STUDIES NEEDED FOR MARKETING AUTHORIZATION

Pharmaceutically equivalent multi-source pharmaceutical products must be shown to be therapeutically equivalent to one another in order to be considered interchangeable. Several test methods are available to therapeutic equivalence, including:

(a) Pharmacokinetic studies in humans (bioequivalence) in which the active drug substance or one or more metabolites are measured in an accessible biologic fluid such as plasma, blood or urine.
(b) Comparative pharmacodynamic studies in humans.
(c) Comparative clinical trials.
(d) In-Vitro Studies.

Applicability of each of these four modalities is discussed in subsequent sections of this guideline and special guidance is provided to conduct an assessment of bioequivalence studies.

Acceptance of any test procedure in the documentation of equivalence between two pharmaceutical products by the drug regulatory authority depends on many factors, including characteristics of the active drug substance and the drug product. Where a drug produces meaningful concentrations in an accessible biological fluid, such as plasma, bioequivalence (pharmacokinetic) studies are preferred. Where a drug does not produce measurable concentrations in an accessible biological fluid, comparative clinical trials or pharmacodynamic studies may be necessary to document equivalence. In vitro testing, preferably based on a documented "in-vitro/in-vivo correlation", may sometimes provide the same indication of bioequivalence between two pharmaceuticals.
1. PHARMACOKINETIC STUDIES IN HUMANS
 Bioequivalence Studies

The definition of bioequivalence expressed in terms of rate and extent of absorption of the active ingredient or moiety to the site of action, emphasize the use of pharmacokinetic measures in an accessible biological matrix such as blood, plasma, or serum and/or urine to indicate the release of the drug substance from the drug product into the systemic circulation. This approach resets on the understanding that measuring the active moiety or ingredient at the site of action is not generally possible and, furthermore, that some relationship exists between the efficacy/safety and concentration of the active moiety and/or its important metabolite or metabolites in the systemic circulation.

Bioequivalence studies are designed to compare the in vivo performance of a test pharmaceutical product (multi-source) compared to a reference pharmaceutical product. A common design for a bioequivalence study involves administration of the test and reference products on two occasions to volunteer subjects, with each administration separated by a washout period. The washout period is chosen to ensure that drug given in one treatment is entirely eliminated prior to administration of the next treatment. Just prior to administration, and for a suitable period afterwards, blood and/or urine samples are collected and assayed for the concentration of the drug substance and/or one or more metabolites. The rise and fall of these concentrations over time in each subject in the study provide an estimate of how the drug substance is released from the test and reference products and absorbed into the body. To allow comparisons between the two products, these blood (to include plasma or serum) and/or urine concentration time curves are used to calculate certain bioequivalence metrics of interest. These metrics are calculated for each subject in the study and the resulting values are compared statistically. Details of the general approach are provided in the following sections:
A. Study Design

1. Pilot Study

A pilot study in a small number of subjects can be carried out before proceeding with a full bioequivalence study. The study can be used to validate analytical methodology, assess variability, optimize sample collection time intervals, and provide other information. For example, for conventional immediate-release products, careful timing of initial samples may avoid a subsequent finding in a full-scale study that the first sample collection occurs after the plasma concentration peak. For modified-release products, a pilot study can help determine the sampling schedule to assess lag time and dose dumping. A pilot study that documents bioequivalence may be acceptable, provided that its design and execution are suitable and a sufficient number of subjects (e.g., 12) have completed the study.

2. Nonreplicate Study Designs

Nonreplicate study designs are recommended for bioequivalence studies of most orally administered, immediate-release dosage forms. The general recommendations for nonreplicate designs are provided in Appendix 1.

3. Replicate Study Designs

Replicate study designs are recommended for bioequivalence studies of modified-release dosage forms and highly variable drug products (within-subject coefficient of variation ≥ 30%), including those that are immediate release, modified-release, and other orally administered drug products. Replicate study designs offer several scientific advantages compared to nonreplicate designs. The advantages of replicate study designs are that they:

(i) Allow comparisons of within-subject variance for the test and reference products.

(ii) Indicate whether a test product exhibits higher or lower within-subject variability in the bioavailability measures when compared to the reference product.
(iii) Suggest whether a subject-by-formulation interaction may be present.
(iv) Provide more information about factors underlying formulation performance.
(v) Reduce the number of subjects needed in the bioequivalence study.

4. Food-Effect Studies

Food-effect bioequivalence studies focus on demonstrating comparable bioavailability between test and reference products when administered with meals. Usually, a single-dose, two-period, two-treatment, two-sequence crossover study is recommended for food-effect bioequivalence study. Food-effect bioequivalence studies are generally recommended for modified-release products. The general recommendations for food-effect bioequivalence study designs are provided in Appendix 2. Food-effect bioequivalence studies are also recommended for certain conventional release drug products. Selection of conventional release drug products that require food studies is based upon certain considerations, such as:
(i) Documented evidence of effect of food on drug absorption (e.g., cefaclor);
(ii) The drug is recommended to be administered with food; and
(iii) The drug may produce gastric irritation under fasting conditions, thus may be taken with food (e.g., NSAIDs).

B. Drug Products

1. Immediate-Release Products

For immediate-release oral solid dosage forms such as capsules, tablets and also suspension dosage forms, a single-dose, two-treatment, two-way, two-period, two-sequence crossover fasting study design should be performed. The bioequivalence study should be performed between the test product and the reference listed drug using the highest strength available.
2. **Modified-Release Products**

Modified-release products include delayed-release products and extended (controlled)-release products. Delayed-release drug products such as enteric-coated dosage forms. Bioequivalence studies for delayed-release drug products are similar to those for extended-release drug products. Extended-release products can be capsules, tablets, granules, pellets, and suspensions.

For extended-release and delayed-release drug products, the following studies are recommended:

(i) A single-dose, replicate, fasting study comparing the highest strength of the test and reference listed drug product.

(ii) A food-effect, nonreplicate study comparing the highest strength of the test and reference product.

Because single-dose studies are considered more sensitive in addressing the primary question of bioequivalence (i.e., the release of the drug substance from the drug product into the systemic circulation), multiple-dose studies are generally not recommended, even in instances where nonlinear kinetics are present.

C. **Subjects**

For a sound bioequivalence study the sponsor should enroll a number of subjects sufficient to ensure adequate statistical results, which is based on the power function of the parametric statistical test procedure applied. The number of subjects “should be not less than 12” (sometimes more than 24 are needed as in case of highly variable drugs) and should be determined using appropriate methods taking into account the error variance associated with the primary parameters to be studied (as estimated for a pilot experiment, from previous studies or from published data), the significance level desired (\(\alpha = 0.05 \)), and the deviation from the reference product compatible with bioequivalence (± 20%) and compatible with safety and efficacy. In most of the cases 18-24 normal healthy subjects (sometimes more than 24) preferably non smoking, between 18-50 years in age and within 10% of ideal body weight for height and body build (Metropolitan Life Insurance Company Statistical Bulletin, 1983) are enrolled in a crossover bioequivalence study. For
a parallel design study a greater number of subjects may be required to achieve sufficient study power.

Sponsors should enter a sufficient number of subjects in the study to allow for dropouts. Because replacement of subjects could complicate the statistical model and analysis, dropouts generally should not be replaced.

The major objective of using a selective demographic profile is to minimize the magnitude of inter-subject variability. In some cases, for bioequivalence studies on specific classes of drugs, for example cytotoxic drugs, drugs solely recommended for a very specific population or gender, etc., and for studies using pharmacodynamic or clinical endpoints, a targeted patient population may be enrolled in the study. If females are included in the study, the effects of gender differences and menstrual cycle (if applicable) are examined statistically.

A physical examination, medical history (administered within 30 days prior to the initiation of the study), routine blood chemistry and the hematology tests and urinalysis should be performed to ensure normal hepatic, hematological and renal functions of the volunteers selected for the study. Subjects should be free of any history of serious gastrointestinal, renal, hepatic, cardiovascular or hematological disorders and should have no history of adverse reactions to the drug (or its class) under study. Exclusion and inclusion criteria should be stated in the study protocol. The subjects are not permitted to take any prescription or over-the-counter drug products within two weeks of the start of the study. Ingestion of alcohol or caffeine or related xanthines containing food or beverages is not allowed within 48 hours. Each subject is enrolled after signing an Informed Consent Form (ICF). Both the study protocol and ICF are approved by an appropriate Institutional Review Board (IRB) prior to the start of the study. A priori provision is made for the replacement of dropout subjects by enrolling additional subjects.
D. Ethical Principles

All research involving human subjects should be conducted in accordance with the ethical principles contained in the current version of the Declaration of Helsinki. It is essential to have a review committee confirm the protocol complies with ethical standards for research on human subjects. The voluntary informed written consent of the healthy volunteers to participate in the study must be obtained. Information given to each volunteer should include details of the study, risks associated with participation and information regarding the right to withdraw at any time from participation without jeopardy.

E. Drug Dose and Dosing

The test product should be from a production lot or from a lot produced under production conditions. Each drug product should be clearly identified by its lot number, manufacture, and expiration dates. An approved product serves as the reference drug. A generic drug product (Test Drug) is compared to the designated innovator product (Reference Drug). A reference product is a pharmaceutical product with which the new product is intended to be interchangeable in clinical practice. The reference product would normally be the innovator product for which efficacy, safety and quality have been established.

Bioequivalence studies on generic products are usually conducted on the highest approved strength, unless there are safety concerns preventing the use of this strength. The administered dose does not ordinarily exceed the dose recommended in the labeling. Typically, in a single dose study, the test and reference drug products whose potencies do not vary more than ± 5%, are administered to the subjects according to their randomization schedule and pre-assigned sequence. The dose is administered with sufficient fluid after at least 10 hours of fasting which is continued for at least 4 hours post-dose. Appropriate restrictions on fluid intake and physical activities are made, and all vital signs and adverse events are monitored post-dose.
F. Drug Accountability Record
The quantity of drugs supplied by the sponsor must be recorded and kept in secure place under the responsibility of the principle investigator. The left over drugs are properly stored for a period not less than the expiration date and not more than 5 years.

G. Moieties to be Measured
The moieties to be measured in biological fluid collected in bioequivalence studies are either the active drug ingredient or its active moiety in the administered dosage form (parent drug) and, when appropriate, its active metabolites.
This guidance recommends the following approaches for bioequivalence studies:
Measurement of only the parent drug released from the dosage form, rather than the metabolite, is generally recommended. The rationale from this recommendation is that the concentration-time profile of the parent drug is more sensitive to changes in formulation performance than a metabolite, which is more reflective of metabolite formation, distribution, and elimination. The following are exception:
(i) Measurement of a metabolite may be preferred when the parent drug levels are too low to allow reliable analytical measurement in blood, or serum for an adequate length of time. The metabolite data obtained from these studies should be subjects to a full statistical evaluation including a confidence interval approach for bioequivalence demonstration.
(ii) A metabolite may be formed as a result of gut wall or other presystemic metabolism. If the metabolite contributions meaningfully to safety and/or efficacy, the metabolite and the parent drug should be measured. When the relative activity of the metabolite is low and does not contribute meaningfully to safety and /or efficacy, it does not need to be measured. The parent drug measured in these bioequivalence studies should be subject to full statistical evaluation including a confidence interval approach. The metabolite data can be used to provide supportive evidence of comparable therapeutic outcome.
H. Bioanalytical Methodology

Bioanalytical methods for bioequivalence studies should be accurate, precise, selective, sensitive and reproducible. The FDA guidance entitled “Guidance for Industry: Bioanalytical Method Validation” (Published in May 2001), should be adapted in validating bioanalytical methods.

I. Collection of Biological Matrix and Sampling Schedule

Several samples of appropriate biological matrix (blood, plasma/serum, urine) are collected at various time intervals post-dose. The sampling schedule depends on the pharmacokinetic characteristics of the drug tested. In most cases, plasma or serum is the matrix of choice. However, if the parent drug is not metabolized and is largely excreted unchanged and can be suitably assayed in the urine, urinary drug levels as well as plasma levels may be used to assess bioequivalence.

Sufficient numbers of samples are collected during the absorption phase to adequately define the ascending portion of the plasma drug level versus time curve. Intensive sampling is carried out around the time of the expected peak concentration. Sufficient numbers of samples should also be collected in the log-linear elimination phase of the drug so that the terminal elimination rate constant and half-life of the drug can be accurately determined. A sampling period extending to at least four to five terminal elimination half-lives of the drug or the four to five longest half-lives of the pertinent analyte (if more than one analyte) is usually sufficient. The samples are appropriately processed and stored carefully under conditions that preserve the integrity of the analyte(s).

J. Pharmacokinetic Parameters (Bioavailability Metrics)

Examination of the plasma analyte concentration versus time profile provides an overview of the comparative absorption and elimination of the test and reference drug products. In addition, several observed and estimated parameters are also evaluated to assess bioequivalence.

In a single dose bioequivalence study, the following pertinent pharmacokinetic parameters are examined:

\[\text{AUC}_{0-\text{last}} = \text{Area under the curve (from time 0 to time of Last Quantifiable Concentration)}. \]
AUC$_{0\rightarrow\infty}$ = Area under the curve (from time 0 to infinity).
C$_{\text{max}}$ = Maximum concentration.
T$_{\text{max}}$ = Time to maximum concentration.
λ_z = Terminal elimination rate constant.
T$_{1/2}$ = Terminal elimination half-life.

A sufficient number of blood samples should be taken to cover at least 80% of the area under the curve as extrapolated to infinity in each individual.

If a multiple dose studies (steady-state studies) were performed, the following pharmacokinetic parameters are examined:

AUC$_{0\rightarrow T_{\text{ss}}}$ = Area under the curve (from time 0 to dosing interval) at steady-state.
C$_{\text{maxss}}$ = Maximum concentration at steady state.
C$_{\text{minss}}$ = Minimum concentration at steady state.
C$_{\text{avgss}}$ = Average concentration at steady state.
T$_{\text{maxss}}$ = Time to maximum concentration at steady state.

$\%$ Fluctuation $= 100 \left(\frac{C_{\text{maxss}} - C_{\text{minss}}}{C_{\text{avgss}}} \right)$

C$_{\text{max}}$, C$_{\text{maxss}}$, C$_{\text{minss}}$, T$_{\text{max}}$ and T$_{\text{maxss}}$ are determined directly from the observed data. AUCs are estimated by the conventional trapezoidal rule. In the multiple dose study, at least three consecutive C$_{\text{minss}}$ should be measured to assure attainment of steady state.

Bioequivalence of different formulations of the same drug substance comprises equivalence with respect to rate and extent of drug absorption. It is part of “Good Biometrical Practice” to stipulate the primary characteristics for the confirmative bioequivalence analysis of rate and extent of absorption in the study protocol prior to the commencement of the bioequivalence study. The area under the concentration time curve (AUC$_{0\rightarrow\infty}$) generally serves as characteristic of the extent of absorption, while in case of fast-releasing (conventional-releasing) formulations the maximum concentration (C$_{\text{max}}$), and the time of its occurrence (T$_{\text{max}}$), may serve as characteristics of the rate of absorption.

In multiple-dose studies (steady-state) the percent peak-trough fluctuation Fluctuation $= 100 \left[\frac{C_{\text{maxss}} - C_{\text{minss}}}{C_{\text{avgss}}} \right]$ and the AUC over one steady-state dose interval (AUC$_{0\rightarrow T_{\text{ss}}}$) can be used as primary characteristics of rate and extent of absorption, respectively.
If urinary samples are used as the biological matrix, the following pharmacokinetic parameters are determined from the observed data: cumulative excretion, excretion rate at collection intervals, maximum excretion rate and time to maximum excretion rate.

K. Pharmacokinetic Measures of Systemic Exposure

Systemic exposure means comparable rate and extent of absorption. Exposure measures are defined relative to early, peak, and total portions of the plasma, serum, or blood concentration-time profile, as follows:

1. **Early Exposure**
 For orally administered immediate-release drug product, bioequivalence may generally be demonstrated by measurements of peak and total exposure. An early exposure measure may be indicated on the basis of appropriate clinical efficacy/safety trials and/or pharmacokinetic/pharmacodynamic studies that call for better control of drug absorption into the systemic circulation (e.g., to ensure rapid onset of an analgesic effect or to avoid an excessive hypotensive action of an antihypertensive). In this setting, the guidance recommends use of partial AUC as an early exposure measure. The partial area should be truncated at the population median of Tmax values for the reference formulation. At least two quantifiable samples should be collected before the expected peak time to allow adequate estimation of the partial area.

2. **Peak Exposure**
 Peak exposure should be assessed by measuring the peak drug concentration (C\text{max}) obtained directly from the data without interpolation.

3. **Total Exposure**
 For single-dose studies, the measurement of total exposure should be:
 - Area under the plasma/serum/blood concentration-time curve from time zero to time t \((AUC_{0\rightarrow t})\), where t is the last time point with measurable concentration for individual formulation.
• Area under the plasma/serum/blood concentration-time curve from time zero to infinity (AUC\(_{0→∞}\)), where AUC\(_{0→∞}\) = AUC\(_{0→t}\) + \(C_t/\lambda_z\), \(C_t\) is the last measurable drug concentration and \(\lambda_z\) is the terminal or elimination rate constant calculated according to an appropriate method. The terminal half-life (T\(_{1/2}\)) of the drug should also be reported.

L. **First Point C\(_{\text{max}}\)**

The first point of a concentration-time curve in a bioequivalence study based on blood and/or plasma measurements is sometimes the highest point, which raises a question about the measurement of true C\(_{\text{max}}\) because of insufficient early sampling times. A carefully conducted pilot study may avoid this problem. Collection of an early time point between 5 and 15 minutes after dosing followed by additional sample collections (e.g., two to five) in the first hour after dosing may be sufficient to assess early peak concentrations. If this approach is followed, data sets should be considered adequate, even when the highest observed concentration occurs at the first time point.

M. **Long Half-Life Drugs**

In a bioequivalence study involving an oral product with a long half-life drug, a nonreplicate, single-dose, crossover study can be conducted, provided an adequate washout period is used. If the crossover study is problematic, a bioequivalence study with a parallel design can be used. For either a crossover or parallel study, sample collection time should be adequate to ensure completion of gastrointestinal transit (approximately 2 to 3 days) of the drug product and absorption of the drug substance. C\(_{\text{max}}\) and a suitably truncated AUC can be used to characterize peak and total drug exposure, respectively. For drugs that demonstrate low intra-subject variability in distribution and clearance, an AUC truncated at 72 hours (AUC\(_{0→72}\)) may be used in place of AUC\(_{0→t}\) or AUC\(_{0→∞}\). For drugs demonstrating high intra-subject variability in distribution and clearance, AUC truncated warrants caution.
N. **Statistical Analysis and Acceptance Criteria**

1. **General Aspects**
 Parametric (normal theory) general linear model procedures are recommended for the analysis of pharmacokinetic data derived from in-vivo bioequivalence studies. Analysis of variance (ANOVA) should be performed on the pharmacokinetic parameters AUCs, T_{max} and C_{max}. Appropriate statistical models pertaining to the design of the bioequivalence study should be employed. For example, for a conventional two-treatment, two-period, two-sequence (2 x 2) randomized crossover study design, the statistical model often includes factors accounting for the following sources of variation:
 1. Sequence (Sometimes called Group or Order).
 2. Subjects nested in sequences.
 3. Period (or Phase).
 4. Treatment (sometimes called Drug or Formulation).
 The sequence effect should be tested using the [subject (sequence)] mean square from the ANOVA as error term. All other main effects should be tested against the residual error (error mean square) from the ANOVA.
 Assumption of the design or analysis should be addressed, and the possibility of differing variation in the formulations should be investigated. This covers investigation of period effects, sequence or carry-over effects, and homogenity of variance. Outlying observations should be reviewed for their impact on the conclusion. Medical or pharmacokinetic explanations for such observations should be sought.

2. **Decision Rules:**
 Testing the null-hypothesis of equality of two formulation means by the F-test for treatments from ANOVA analysis is not acceptable. In addition, the power approach “80/20” rule of the point hypothesis and the “75/75” rule are also not acceptable as decision rules in assessment of bioequivalence. The “80/20” rule can be used as a pre-study power calculation for sample size determination in the planning stage of the study protocol.
As the consumer (patient) risk of erroneously accepting bioequivalence is of primary concern for health authorities, only statistical procedures not exceeding a nominal consumer risk of 5% are acceptable, and among those the one which minimize the producer (pharmaceutical company) risk of erroneously rejecting bioequivalence has to be selected as the decision procedure of choice.

The statistical methods of choice at present are the two one-sided test procedure (Schuirmann 1987) or to derive a parametric or nonparametric 100 (1-2α) % confidence interval for the ratio (or difference) between the test and reference product pharmacokinetic variable averages. Alpha is set at 5% leading, in the parametric case, to the shortest (conventional) 90% confidence interval based on an analysis of variance or, in the nonparametric case, to the 90% confidence intervals (Hauschke et al., 1990).

The statistical procedures should be specified before the data collection starts. The procedures should lead to a decision scheme which is symmetrical with respect to the two formulations (i.e., leading to the same decision whether the generic formulation is compared to reference product or reference product to the generic formulation).

3. Data Transformation:
Concentration and concentration-related quantities e.g., AUC and C_{max}, should be analyzed after logarithmic transformation. T_{max} will usually be analyzed without such transformation. For T_{max} normally descriptive statistics should be given. Parametric 90%-confidence intervals for the T_{max} should be performed on untransformed data and the equivalence range should be expressed in absolute differences of the mean test minus reference.
4. Acceptance Ranges:

Regarding AUCs, the 90% confidence interval should generally be within the acceptance range 80% to 125% (when log-transformed data are used). For drugs with a particularly narrow therapeutic range, the AUC acceptance range may need to be smaller, and this should be justified clinically.

C_{max} does not characterize the rate of absorption particularly well in many cases and there is no consensus at present time on any other concentration-based parameter, which might be more suitable. The acceptance range for C_{max} may be wider than for the AUC. The recommended range is between 70% to 143% (when log-transformed data are used). The range used should be justified taking into account safety and efficacy.

In general, the choice of the appropriate bioequivalence range should be made on clinical grounds, thus, for a drug with a narrow therapeutic range, tighter limits may have to be considered, e.g., 90% to 111% for AUC and 80% to 125% for C_{max} (when log-transformed data are used).

Statistical evaluation of T_{max} (T_{max} differences) only makes sense if there is a clinically relevant claim for rapid release or action or signs for a relation to adverse effects. The parametric 90% confidence interval (untransformed data are used) and the nonparametric 90% confidence interval for this measure of relative bioavailability should lie within a clinically relevant range.

For multiple dose studies (steady-state) the pharmacokinetic parameters: $AUC_{0→T_{\text{ss}}}$, C_{maxss}, C_{minss}, C_{avgs}, % swing and % fluctuation should be analyzed statistically after logarithmic transformation and the 90% confidence interval should be within the acceptance range 80% to 125%.
O. PRESENTATION OF DATA

The drug concentration in the biological fluid at each sampling time point should be furnished on the original scale for all the subjects who participated in the study. The derived pharmacokinetic parameters should also be furnished on the original scale. The mean, standard deviation, and coefficient of variation for each variable should be computed and tabulated in the final report. To facilitate bioequivalence comparisons, pharmacokinetic parameters for each individual should be displayed in parallel for the formulations tested. In particular for AUC and C_{max}, the difference (T-B), ratio (T/R), and log of ratio (log T/R or Ln T/R) between the test and reference values should be tabulated side by side for all the subjects. For each subject the summary tables should indicate in which sequence (test/reference or reference/test) the subject received the product. In addition to the arithmetic mean for the test and reference products, the geometric means, means of the logs, and standard deviations of the logs should be calculated for AUC and C_{max}. All means, including arithmetic mean, geometric mean, and means of the logs, standard deviations, and coefficients of variation are to be included in the report.

It is acceptable to use logarithms to the base 10 rather than natural logarithms. The report must state unambiguously which logarithms were used, and the use must be consistent throughout.

The pharmacokinetic parameters (λz and $T_{1/2}$) should be calculated for each subject following administration of the test and the reference formulations. It is important to document all points used in λz determination (i.e., time intervals used for estimation of the elimination rate constant). This will facilitate independent verification of results by health authorities.

For statistical evaluation, plasma concentration at each sampling time point should be evaluated statistically using ANOVA. Complete analysis of variance (ANOVA) after logarithmic transformation of the AUC and C_{max} data and untransformed T_{max} data should be presented in the report. In the ANOVA analysis, source of variations (Formulations, Periods, Sequences and Subjects within sequence), degree of freedom, sum of squares, mean square, F-test and Probability of “F” (α) values should be included.
Parametric and/or nonparametric 90% confidence intervals for the mean pharmacokinetic parameters as well as the point estimates should be calculated and tabulated in the report. If the two one-sided t-tests (Schuirmann 1987) were used as the decision criterion, values of both the upper and lower limits of the calculated test statistics and the tabulated t-value should be provided in the report.

P. Individual and Population Bioequivalence

To date, most bioequivalence studies are designed to evaluate average bioequivalence. Experience with population and individual bioequivalence studies is limited. Therefore, no specific recommendation is given on this matter.

Q. Waiver of In-Vivo Bioequivalence Study Requirements

It is to be emphasized that the requirement for demonstration of bioequivalence is never waived. However, for certain formulations and circumstances, equivalence between two pharmaceutical products may be considered self-evident with no further requirement for documentation. Examples include:

(a) When multi-source pharmaceutical products are to be administered paranterally (e.g., intravenous, intramuscular, subcutaneous, intrathecal administration) as aqueous solutions and contain the same active substance(s) in the same concentration and the same excipients in comparable concentrations;

(b) When multi-source pharmaceutical products are solutions for oral use, contain the active substance in the same concentration, and do not contain an excipient that is known or suspected to affect gastrointestinal transit or absorption of the active substance;

(c) When multi-source pharmaceutical products are gases;

(d) When multi-source pharmaceutical products are powders for reconstitution as a solution and the solution meet either criterion (a) or criterion (b) above,
(e) When multi-source pharmaceutical products are otic or ophthalmic products prepared as aqueous solutions and contain the same active substance(s) in the same concentration and essentially the same excipients in comparable concentrations;

(f) When multi-source pharmaceutical products are topical products prepared as aqueous solutions and contain the same active substance(s) in the same concentration and essentially the same excipients in comparable concentrations;

(g) When multi-source pharmaceutical products are inhalation products or nasal sprays, tested to be administered with or without essentially the same device, prepared as aqueous solution and contain the same active substance(s) in the same concentration and essentially the same excipients in comparable concentrations. Special in-vitro testing should be required to document comparable device performance of the multi-source inhalation aqueous product.

For elements (e), (f) and (g) above, it is the duty of the applicant to demonstrate that the excipient in the multi-source products are essentially the same and in comparable concentrations as those in the reference product. In the event this information about the reference product can not be provided by the applicant and the drug regulatory authority does not have access to these data, in vivo studies should be performed.

For conventional release (immediate release) solid oral drug products, in vivo bioequivalence studies are conducted on the highest strength. This requirement for the lower strengths can be waived provided: (a) in vivo bioequivalence is demonstrated on the highest strengths; (b) in-vitro dissolution testing is acceptable; and (c) the formulation for the lower strengths are proportionally similar to the strength which has undergone in vivo bioequivalence testing (i.e., the ratio of active ingredients and excipients between the strengths is essentially the same).

Generally, for extended release (controlled release) drug products, and enteric-coated formulations in vivo bioequivalence study requirements are not waived for the lower strengths. Single dose in-vivo bioequivalence studies under fasting conditions are normally conducted on these strengths.
Other Approaches to Assess Bioequivalence

Bioequivalence of systemically absorbed drugs are assessed using pharmacokinetic (bioavailability) endpoints provided the drug concentrations in the biological matrix can be accurately measured. However, for non-absorbable drug products and those that are intended for topical administration, bioequivalence is assessed by evaluating pharmacodynamic or clinical endpoints or by in vitro test methods. Some examples are: Topical dermatologic corticosteroids are evaluated by a “Skin Blanching Test” (vasoconstrictor assay), topical anti-infective drugs by clinical tests comparing efficacy profiles, metered dose inhalers by pulmonary function tests, and cholesterol lowering resin powder by in vitro binding tests.
2. PHARMACODYNAMIC STUDIES

Studies in healthy volunteers or patients using pharmacodynamic measurements may be used for establishing equivalence between two pharmaceutical products. These studies may become necessary if quantitative analysis of the drug and/or metabolite(s) in plasma or urine cannot be made with sufficient accuracy and sensitivity. Furthermore, pharmacodynamic studies in humans are required if measurements of drug concentrations cannot be used as surrogate endpoints for the demonstration of efficacy and safety of the particular pharmaceutical product e.g., for topical products without intended absorption of the drug into the systemic circulation.

If pharmacodynamic studies are to be used they must be performed as rigorously as bioequivalence studies, and the principles of Good Clinical Practice (GCP) must be followed.

The following requirements must be recognized when planning, conducting and assessing the results of a study intended to demonstrate equivalence by means of measuring pharmacodynamic drug responses.

1. The response, which is measured, should be pharmacological or therapeutic which is relevant to the claims of efficacy and/or safety.
2. The methodology must be validated for precision, accuracy, reproducibility and specificity.
3. Neither the test nor the reference product should produce a maximal response in the course of the study, since it may be impossible to distinguish differences between formulations given in doses, which give maximum or near-maximum effects. Investigation of dose-response relationships may be a necessary part of the design.
4. The response should be measured quantitatively under double blind conditions and be recordable in an instrument-produced or instrument-recorded fashion on a repetitive basis to provide a record of the pharmacodynamic events which are substitutes for plasma concentrations. In those instances, where such measurements are not possible, recordings on visual analog scales may be used. In other instances where the data are limited to qualitative (categorized) measurements appropriate special statistical analysis will be required.
5. Non-responders should be excluded from the study by prior screening. The criteria by which responders versus non-responders are identified must be stated in the protocol.

6. In instances where an important placebo effect can occur, comparison between pharmaceutical products can only be made by a prior consideration of the placebo effect in the study design. This may be achieved by adding a third phase with placebo treatment in the design of the study.

7. The underlying pathology and natural history of the condition must be considered in the study design. There should be knowledge of the reproducibility of base-line conditions.

8. A crossover design can be used. Where that is not appropriate, a parallel group study design should be chosen.

In studies in which continuous variables could be recorded, the time course of the intensity of the drug action can be described in the same way as in a study in which concentrations were measured, and parameters can be derived which describe the area under the effect-time curve, the maximum response and the time when maximum response occurred.

The statistical considerations for the assessment of the outcome of the study are in principle, the same as outlined for the bioequivalence studies. However, a correction for the potential non-linearity of the relationship between the dose and the area under the effect-time curve should be performed on the basis of the outcome of the dose-ranging study as mentioned above. However, it should be noted that the conventional acceptance range as applied for bioequivalence assessment is not appropriate (too large) in most of the cases but should be defined on a case-by-case basis and described in the protocol.
3. CLINICAL STUDIES

In several instances plasma concentration time-profile data are not suitable to assess bioequivalence between two formulations. Whereas in some of the cases pharmacodynamic studies can be an appropriate tool for establishing equivalence, in other instances this type of study cannot be performed because of lack of meaningful pharmacodynamic parameters which can be measured and a comparative clinical trial has to be performed in order to demonstrate equivalence between two formulations.

However, if a clinical study is considered as being undertaken to prove equivalence, the same statistical principles apply as for the bioequivalence studies. The number of patients to be included in the study will depend on the variability of the target parameters and the acceptance range, and is usually much higher than the number of subjects in bioequivalence studies.

The following items are important and need to be defined in the protocol in advance.

The methodology issues for establishing equivalence between pharmaceutical products by means of a clinical trial in patients with a therapeutic endpoint have not yet been discussed as extensively as for bioequivalence trials. However, important items can be identified which need to be defined in the protocol as follows:

(i) The target parameters which usually represent relevant clinical endpoints from which the intensity and the onset, if applicable and relevant, of the response are to be derived;
(ii) The size of the acceptance range has to be defined on case by case basis, taking into consideration the specific clinical conditions. These include, among others, the natural course of the disease, the efficacy of available treatments and the chosen target parameter. In contrast to bioequivalence studies (where a conventional acceptance range is applied) the size of the acceptance range in clinical trials cannot be based on a general consensus on all the therapeutic classes and indications;
(iii) The presently used statistical method is the confidence interval approach. The main concern is to rule out that the test product is inferior to the reference pharmaceutical product by more than the specified amount. Hence, a one-sided confidence interval (for efficacy and/or safety) may be appropriate. The confidence intervals can be derived from either parametric or nonparametric methods;

(iv) Where appropriate, a placebo leg should be included in the design;

(v) In some cases, it is relevant to include safety endpoints in the final comparative assessments.
4. IN-VITRO DISSOLUTION TESTING

Under certain circumstances, bioequivalence can be documented using in vitro approaches. For highly soluble, highly permeable, rapidly dissolving, orally administered drug products, documentation of bioequivalence using an in vitro approach (dissolution studies) is appropriate. In addition to the determination of the in-vivo performance, in vitro dissolution testing is an integral part of the assessment of bioequivalence, especially for the generic drug products. The comparative release profiles of the test and reference drug products are examined. The dissolution testing is conducted by a compendial method and the test product must pass the compendial specifications. For extended release products, the dissolution method and specifications are developed for each drug product. The specifications are applied only to that drug product to maintain its quality and manufacturing controls.

Studies Needed to Support Post-Marketing Manufacturing Conditions

With all pharmaceutical products, in case of post-marketing changes extensive in vitro and/or in vivo testing may be required. Such changes include changes in:

(i) Formulations;
(ii) Site of manufacture;
(iii) Process of manufacture; and
(iv) Manufacturing equipment.

The types and extent of further testing required depend on the magnitude of the changes made. If a major change is made, the product might become a new pharmaceutical product. Reference should be made to national regulatory authorities in this regard or to SUPAC guidelines by FDA.

FORMAT AND CONTENT OF THE REPORT ON BIOEQUIVALENCE STUDIES TO BE SUBMITTED TO THE DRUG REGULATORY AUTHORITIES.
The report of a bioequivalence study should give the complete documentation of its protocol, conduct and evaluation complying with Good Clinical Practice (GCP) and Good Laboratory Practice (GLP) rules. The responsible investigator(s) should sign for their respective section of the report. Name and affiliations of the responsible investigator(s), site of the study and period of its execution should be stated. The names and batch numbers of the pharmaceutical products used in the study as well as the composition(s) of the test product(s) should be given. The analytical validation report should be attached.

Results of in vitro dissolution tests should be provided. In addition, the applicant should submit a signed statement confirming the identity of the test product with the pharmaceutical product, which is submitted for registration. All results should be presented clearly. The procedure for calculating the parameters used (e.g., AUC) from the raw data should be stated. Deletion of data should be justified. If results are calculated using a pharmacokinetic model (although not preferred), the model and computing procedure used should be justified. Individual plasma concentration/time curves should be drawn on a linear/linear scale. All individual data and results should be given, including those of eventually dropped-out subjects. Drop-out and withdrawal of subjects should be reported and accounted for. Test results of representative samples should be included.

The statistical report should be sufficiently detailed, so as to enable the statistical analyses to be repeated if necessary. If the statistical methods applied deviate from those specified in the trial protocol, the reasons for the deviations should be stated.

The following is a proposed format and contents of an in vivo bioequivalence study submission and accompanying in vitro data.

Title page.
Study title.
Name of sponsor.
Name and address of clinical laboratory.
Name, address of the investigator(s).
Name, address of the clinical investigator.
Table of Contents

I. Study resume.
 - Name, and signature of the investigator(s).
 - Name, and signature of the clinical investigator(s).
 - Product information.
 - Summary of bioequivalence study.
 - Summary of bioequivalence data.
 - Plasma.
 - Urinary excretion.
 - Figure of mean plasma concentration-time profile.
 - Figure of mean cumulative urinary excretion.
 - Figure of mean urinary excretion rates.

II. Clinical Study
 - Introduction.
 - Summary of the study.
 - Details of the study.
 - Demographic characteristics of the subjects.
 - Subject assignment in the study.
 - Details of clinical activity.
 - Deviations from protocol.
 - Adverse reactions report.

III. Assay Methodology and Validation
 - Assay method description.
 - Validation procedure.
 - Summary of validation.
 - Data on linearity of standard samples.
 - Data on interday precision and accuracy.
 - Data on intraday precision and accuracy.
 - Data on analyte(s) stability.
 - Figure for standard curve(s) for low/high ranges.
 - Chromatograms of standard and quality control samples.
 - Sample calculation.

IV. Pharmacokinetic Parameters and Tests
 - Definition and calculations.
 - Drug levels at each sampling time and pharmacokinetic parameters.
 - Figure of mean plasma concentration-time profile.
 - Figures of individual subject plasma concentration-time profiles.
 - Figure of mean accumulative urinary excretion.
Figures of individual subject cumulative urinary excretion.
Figure of mean urinary excretion rates.
Figures of individual subject urinary excretion rates.
Tables of individual subject data arranged by drug, drug/period, drug/sequence.

V. Statistical Analyses
 Statistical considerations.
 Summary of statistical significance.
 Summary of statistical parameters.
 Analysis of variance.
 Parametric and/or nonparametric 90% confidence intervals (lower limit, upper limit and point estimate).
 Two one-sided t-tests (lower limits, upper limits of the calculated test statistics and the tabulated t-value).

VI. Protocol.
VII. Informed consent.
VIII. Appendices.
 Randomization schedule.
 Analytical raw data.
 Medical record and clinical reports.

IX. In vitro Testing
 Dissolution testing.
 Dissolution assay methodology.
 Content uniformity testing.
 Potency determination.

X. Batch Size and Formulation
 Batch record.
 Quantitative formulation.

Laboratory Units for Conducting Bioequivalence Studies and Suggested Specifications

The Laboratory units involved in conducting bioequivalence studies are usually affiliated with one of the following parties:

(i) The manufacturer.
(ii) An independent body possessing the expertise and facilities required to conduct a bioequivalence study.
(iv) The drug regulatory authorities.
Most bioequivalence studies are performed by contract bioequivalence testing laboratories, which are generally equipped to conduct both the clinical and analytical phases of a study. Most often, the two study phases are conducted by the same laboratory, although (because of scheduling, special analytical expertise, desire of the pharmaceutical manufacturer to conduct the analytical portion of the study in-house) they may be conducted by different laboratories. The sponsor is urged to rigorously evaluate the candidate contract laboratory (ies) before initiating the study.

The clinical studies must be conducted in compliance with Institutional Review Board (IRB) requirements and with informed consent requirements. For acceptance of data from any laboratory, foreign or domestic, it is important that the laboratory meet good laboratory practices and procedures as certified by an authoritative agency. It must have a qualified staff (pharmacokineticist physician, statistician and trained personnel) and must keep good records of the procedures undertaken and the results obtained. Monitoring by the sponsor of the each phase of the study, including validation of the assay method, protocol design, subject selection, collection and storage of the blood or urine samples, and pharmacokinetic and statistical analyses of the data is recommended.

Appendix 1

General Pharmacokinetic Study Design and Data Handling

For replicate and nonreplicate, in-vivo pharmacokinetic bioequivalence studies, the following general approaches are recommended, recognizing that the elements may be adjusted for certain drug substances and drug products.

1. **Study Design:**
 For immediate release solid/suspension dosage forms, usually a non replicate, randomized, single-dose, two-treatment, two-period, two-sequence crossover design is performed.

2. **Study Conduct:**
 A. The test or reference products should be administered with about 240 ml of water to an appropriate number of subjects under fasting conditions, unless the study is a food-effect bioequivalence study.
B. Generally, the highest marketed strength should be administered as a single unit. If necessary for analytical reasons, multiple units of the highest strength can be administered, provided the total single-dose remains within the labeled dose range.

C. An adequate washout period (e.g., more than 5 half lives of the moieties to be measured) should separate each treatment.

D. The lot numbers of both test and reference listed products and the expiration date for the reference products should be stated. The drug content of the test product should not differ from that of the reference listed product by more than 5 percent at the date of study. The sponsor should include a statement of the composition of the test product and, if possible, a side-by-side comparison of the compositions of the test and reference listed products. Samples of the test and reference listed product must be retained for 5 years.

E. Prior to and during each study phase, subjects should:
 i. Be allowed water as desired except for one hour before and after drug administration.
 ii. Be provided standard meals no less than 4 hours after drug administration.
 iii. Abstain from alcohol, tea and coffee for 24 hours prior each study period and until after the last sample from each period is collected.

3. Sample Collection and Sampling Times:
 Under normal circumstances, blood, rather than urine should be used. In most cases, drug, or metabolites are measured in serum or plasma. However, in certain cases whole blood may be more appropriate for analysis. Blood samples should be drawn at appropriate times to describe the absorption, distribution, and elimination phases of the drug. For most drugs, 12 to 18 samples, including a pre-dose sample, should be collected per subject per dose. This sampling should continue for at least three or more terminal half lives of the drug. The exact timing for sample collection depends on the nature of the drug and the input from the administered dosage form. The sample collection should be spaced in such a way that the maximum concentration of the drug in the blood (Cmax) and terminal elimination rate constant (λz) form linear regression can be estimated accurately. At least three to four samples should be obtained during the terminal log-linear phase to obtain an
accurate estimate of \(\lambda_z \) from linear regression. The actual clock time when samples are drawn as well as the elapsed time related to drug administration should be recorded.

4. **Subjects with Pre-dose Plasma concentration:**
 If the pre-dose concentration is less than or equal to 5 percent of Cmax value in that subject, the subject’s data without adjustment can be included in all pharmacokinetic measurements and calculation. If the pre-dose value is greater than 5 percent of Cmax, the subject should be dropped from all bioequivalence study evaluations.

5. **Data Deletion Due to Vomiting:**
 Data from subjects who experience emesis during the course of a bioequivalence study for immediate-release products should be deleted from statistical analysis if vomiting occurs at or before 2 times median Tmax. In the case of modified-release products, the data from subjects who experience emesis any time during the labeled dosing interval should be deleted.

6. **Pharmacokinetic Information Recommended for Submission:**
 - Plasma concentration and time points.
 - Subject, period, sequence and treatment.
 - \(\text{AUC}_0 \rightarrow t \), \(\text{AUC}_0 \rightarrow \infty \), Cmax, Tmax, \(\lambda_z \), and \(T_{1/2} \).
 - Intersubject, intrasubject, and/or total variability, if available.
 - Subject-formulation interaction variance component (\(\sigma_D^2 \)) if individual bioequivalence criterion is used.
 - \(C_{\text{min}} \) (concentration at the end of a dosing interval), \(C_{\text{av}} \) (average concentration during a dosing interval), degree of fluctuation \(\{(C_{\text{max}} - C_{\text{min}})/C_{\text{av}}\} \), and swing \(\{(C_{\text{max}} - C_{\text{min}})/C_{\text{min}}\} \) if steady-state studies are employed.
 - Partial AUC, requested only as discussed previously.
 - In addition the following statistical information should be provided for \(\text{AUC}_0 \rightarrow t \), \(\text{AUC}_0 \rightarrow \infty \), and Cmax.
 - Geometric mean.
 - Arithmetic mean.
 - Ratio of means.
 - Confidence intervals.
Logarithmic transformation should be provided for measures used for bioequivalence demonstration.

7. Rounding off of confidence interval values:

Confidence interval (CI) values should not be rounded off; therefore, to pass a CI limit of 80-125, the value should be at least 80.00 % and not more than 125.00%.

Appendix 2

Food-Effect Bioequivalence Studies

1. Study Design
A randomized, balanced, single-dose, two-treatment, two-period, two-sequence crossover design is recommended for food-effect bioequivalence studies. The test product and the reference listed drug product should be administered under fed conditions. An adequate washout period should separate the two treatments.

2. Subject Selection
Food-effect bioequivalence studies are usually carried out in healthy human volunteers. An adequate number of subjects should complete the study so as to achieve sufficient power for appropriate statistical assessment, but should not be less than 12.

3. Strength
Generally, the highest strength of a product should be tested in food-effect bioequivalence studies. In some cases, clinical safety concerns could warrant use of lower strengths of the dosage form. The lot and strength tested in the pivotal bioequivalence fasted study should be tested in the food-effect bioequivalence study. When multiple strengths of MR drug products are intended for marketing and the food-effect study is performed on one of these strengths, in-vitro dissolution testing should be conducted for all other strengths in three different pH media. Similarity of dissolution should be established. Lack of similarity of dissolution could indicate that additional food-effect studies should be performed using other strengths.
4. **Test Meal**
The primary food-effect bioequivalence study should be performed under conditions expected to provide maximal perturbation due to presence of food in the gastrointestinal tract. A high fat (approximately 50% of total caloric content of the meal), high calorie (approximately 1000 calories) breakfast is therefore recommended as a test meal for food-effect bioequivalence study. A representative example is 2 eggs fried in butter, 2 slices of beef luncheon, s slices of toast with butter, 4 ounces of hash brown potato, 8 ounces of whole milk (i.e., approximately 150 protein calories, 250 carbohydrate calories, 500-600 fat calories). Alternative meals with equivalent nutritional content can be used. Details of the meal should be recorded prior to the study and provided in the study report.

5. **Administration**
Following an overnight fast of at least 10 hours, subject should be served the test meal and ingest this meal within 30 minutes. The drug product should be administered with 180 ml of water immediately (within 5 minutes) after completion of the meal. No food should be allowed for at least 4 hours post-dose. Water can be allowed *ad libitum* after 2 hours. Subjects should be served scheduled standardized meals throughout the remaining study period.

6. **Sample Collection**
For both treatment periods, timed biological fluid samples should be collected from the subjects to permit characterization of the complete plasma concentration-time profile for the drug and/or metabolites. Caution should be used when studying MR dosage forms (e.g., enteric-coated products) where coadministration with food can delay in vivo drug release. In such instances, sampling times should be adjusted to obtain the complete plasma concentration-time profile.

7. **Data and Statistical Analysis**
The following measurements should be obtained from the resulting concentration-time profiles:
- Area under the concentration-time curve (AUC$_{0\rightarrow t}$, AUC$_{0\rightarrow \infty}$).
- Peak concentration (C_{max}).
- Time to peak concentration (T_{max}).
- Lag-time (T_{lag}) for delayed release products.
Individual subject parameters, as well as summary statistics (e.g., group averages, standard deviations, coefficients of variation, 90% confidence intervals {CI}) should be reported. The reference product administered under fed conditions should serve as the reference.

An equivalent food effect will be concluded when the 90% CI for the ratio of the means (population geometric means based on log-transformed data) of the test and the reference product falls within 80 – 125% for AUC and 80 – 143% for C_{max}. If these CI criteria are not satisfied, the test formulation might not be considered equivalent to and interchangeable with the reference formulation. Clinical relevance of any change in T_{max}, and T_{lag} should be considered.
REFERENCES

7. Food and Drug Administration (FDA), Guidance on statistical procedures for bioequivalence studies using a standard two-treatment crossover design, Informal communication by the Division of Bioequivalence, Office of Generic Drugs, Rockville, MD, 1992.

EVALUATION OF BIOEQUIVALENCE STUDIES

The report of a bioequivalence study should give the complete documentation of its protocol, and methods of its implementation, conduct, complying with Good Clinical Practice (GCP) rules.

The following sections should be included in a bioequivalence report:

1. Summary:
 Summary should include: Brand names, study design, number of subjects, treatment conditions (fasting or fed), type of biological samples obtained, analytical procedure used, pharmacokinetic parameters used to assess bioequivalence, statistical methods used, results and conclusion.

2. Protocol of the study:
 The detailed protocol of the study should include the following:
 Summary, introduction, objectives of the study, volunteers, study design, experimental plans and methods, procedures to minimize risk and/or adverse reactions, indication for subject removal, analytical procedure and data analysis.

3. Introduction:
 The pharmacokinetic characteristics of the drug under investigation should be stated in the introduction with supporting references, rational for conducting the study and objectives of the study.

4. Materials and Methods:
 A. Drugs under investigation:
 The generic name, trade name, dosage form, strength, lot number, date of manufacture and expiry date for the reference standard and the generic(s) under investigation should be mentioned.
B. Subjects:
Number of subjects participated in the study, their full demographic data (sex, age, weight and height), criteria for exclusion, criteria for inclusion should be mentioned. Consent forms and the approval of the appropriate ethical committee should also be stated in the report. The number of subjects should not be less than 18 to 24 healthy subjects. If the number of subjects are less than 18, justification for using that number should be stated in the report. For example based on previous pilot study and using equations the number of subjects could be less than 18.

C. Study Design:
Study design should include number of periods, sequences, treatments, washout periods, treatment conditions (fasting or after food), fluid intake with dosage, time and type of food and fluids throughout the study day. Each time of sample collections and storage conditions of samples. The report should include sequence of drugs administration for each subject.

D. Collection of blood samples:
Sufficient number of samples are collected during the absorption phase, intensive sampling is carried out around the time of the expected peak concentrations and sufficient number of samples should also be collected in the log-linear elimination phase of the drug. A sampling period extending to at least four to five elimination half-lives of the drug is usually sufficient.

Examples:
1. for a drug with a terminal elimination half-life of about 2 hours and Cmax of about 2-3 hours, the following sampling time is sufficient: 0, 0.5, 1.0, 1.5, 2.0, 2.5, 3.0, 3.5, 4.0, 5.0, 6.0, 7.0, 8.0, 10.0 and 12.0 hours.
2. For a drug with a terminal elimination half-life of about 8 hours and Cmax of about 2-3 hours, the following sampling time is sufficient: 0, 0.5, 1.0, 1.5, 2.0, 2.5, 3.0, 3.5, 4.0, 5.0, 6.0, 7.0, 8.0, 10.0, 12.0, 16.0, 24.0, 30.0, 36.0 and 48.0 hours.
E. Analytical Techniques:
The materials, solvents and equipment used should be detailed. Method of preparation of the stock solutions, calibration standards and sample handling, i.e., procedure of analysis should be outlined in details. The report should include full assay validation, i.e., sensitivity, lower quantifiable limits, selectivity, precision (inter-and intraday), accuracy or recovery, and specificity). Representative chromatographs should be included.

The following should be carefully evaluated:
1. Most of the currently applied methods (HPLC and GC) require addition of an internal standard (a similar compound that is added to account for loss of the drug during sample handling). If no internal standard is included during samples preparation the method is not acceptable.
2. The range of the standard curve should cover the lowest quantifiable concentration and the highest concentration.

F. Pharmacokinetic Parameters:
The method used for calculation of the pharmacokinetic parameters: Cmax, Tmax, AUCo-t, AUCO-00, Kel and T1/2, should be described in details. Method used for calculation of the residual area (AUC t-oo) and its contribution to the overall area should be clearly stated. The residual area should be less than 20% of the total area or the ratio of AUCo-t / AUCO-00 should be >80%.

G. Statistical Analysis:
Analysis of variance (ANOVA) for crossover design should be performed on the pharmacokinetic parameters. The ANOVA should include factors accounting for the following source of variations:
1. Formulation (sometimes called Drug or Formulations)
2. Period (or Phase).
3. Sequence (some called group or order).
4. Subjects within sequence.
 Logarithmic transformation of the pharmacokinetic parameters: Cmax, AUCO-t and AUC0-00 should be performed before data analysis. The pharmacokinetic parameter Tmax should be analyzed on untransformed data.
The two one-sided hypotheses at the alpha = 0.05 level of significance should be performed for AUC and Cmax by constructing the 90% confidence intervals for the ratio between the test and the reference averages. For AUC o-t and AUC 0-oo confidence intervals should be between 80% and 125%. For Cmax the confidence intervals could be between 70% and 143 depending on the drug under investigation.

5. Results:

A. The drug concentration in the biological fluid (plasma or serum) at each sampling time point should be presented for all subjects who participated in the study. No plasma concentrations below the lower quantifiable limit of the assay should be reported.

B. The derived pharmacokinetic parameters: Cmax’ Tmax AUC0-t’ AUC0-00, Kel and T1/2, should also be presented for each individual subject.

C. The ANOVA tables should be presented for all the pharmacokinetic parameters:

D. The 90% confidence intervals should be calculated for AUC0-t’, AUC0-00, and Cmax’
EVALUATION OF BIOAVAILABILITY/BIOEQUIVALENCE STUDIES

The report will be checked for adequate information regarding the following, items:

1. Summary Yes No
2. Introduction Yes No
3. Materials and Methods
 a. Drugs under investigation Yes No
 b. Subjects Yes No
 c. Study Design Yes No
 d. Analytical Techniques Yes No
 e. Pharmacokinetic Parameters Yes No
 f. Statistical Analysis Yes No
4. Results Yes No
5. Discussion and Conclusion Yes No

GENERAL EVALUATION
GUIDE LINES ON DRUG BIOEQUIVALENCE REQUIREMENTS IN THE GCC COUNTRIES

ADDRESS

Gulf Countries

1 - Faculty of Pharmacy
 King Saud University
 P.O Box 2457 Riyadh 11541
 Tel: 00966 – 1- 4677448
 Fax: 00966- 1- 4676383

2 - King Faisal Specialist Hospital and Research Center- Riyadh
 P.O Box 3354 Riyadh 11211
 Tel: 00966 4647272
 Fax: 00966

Arab Countries

1- International Pharmaceutical Research Center (IPRC) - Duhait Center – Mecca Street
 Amman – Jorden
 Tel: 00962- 6- 5823421 / 5810773 / 5810775
 Fax: 00962- 2- 7103159

2 - Acdima Center for Bioequivalence and Pharmaceutical Studies
 Amman- Jorden
 Tel: + 962 6 582 1618
 Fax: + 962 6 582 1649
Other Countries

AUSTRIA

1) Biokinet Chernisches Laboratorium Ces. m.b.h
 Nattergasse 4
 A - 1170 Wein

2) Farmainet
 Auersberggasse 1
 A-8010 Graz

CANADA

1) Biovail Corporation International
 Contract Research division
 460 Comstock Road
 Toronto, Ontario
 CANADA
 Tal: (4116) 752-336316
 (216) 75-2-7,610
 Contact Person: Dr. H. Edward Chase

2) Phoenix International Lift Sciences Inc.
 46215 Dobrin Str
 Laurent (Montreal)
 Quebec H4R 2P7, Canada,
 Tel: (514).333-0033
 Fax- (514) 333 8861
 Contact : ’Dr. Judy Zilber
3) College of Pharmacy
 University of Saskatchewan
 Saskatoon,
 Saskatchewan, S7N OWO, CANADA
 Tel: (305) 966-6342
 Fax: (303) 966 6354"
 Contact Person: Dr. K. Midha

4) Faculty of Pharmaceutical Sciences
 University of Alberta
 Edmonton
 Alberta, T6G ’2N8, Canada
 Tel: (403) 492 2807
 Fax: (403) 492-1217
 Contact: Dr. F. Jarnali

5) Faculty de Medecine
 Dept. de Pharmacologie
 Universite de Montreal
 Ed. Principal PS 413
 2900 boul. Edouard Montrpetit
 Montreal
 Quebec, H3L3J7, Canada
 Tel: (514) 343 6120
 Fax: (514) 343 7904
 Contact person: Dr. G. Gaille
6) Faculty of Pharmaceutical Sciences
Division of Biopharmaceutics and Pharmaceutics
University of British Columbia
2114 East Mall
Vancouver
British Columbia, V6T 1W5 Canada
Tel (604) 822-5449
Fax: (604) 822 2113
Contact person: Dr. James Axelson

7) Trimel Corporation
10 Carlson Court, 8th floor
Etobicoke
Ontario, M9W 6L2
Tel: (416) 798 3000
Contact person: Dr. S. Smith

8) Innovus, Inc.
suit 204,
200 James Street S.
Hamilton
Ontario, L8P 3A9, Canada
Tel: (905) 529 8117
Fax: (905) 5-72-9586
Contact person: Dr. L. Cuddy
9) Cato Pharma Canada Inc.
 Cavendish Corporate Center
 Suite 201
 9900 Cavendish Blvd
 Saint Laurent
 Quebec, H4M 2V2, Canada
 Tel: (514) 856-2286
 Fax: (514) 856-0100
 Contact person: Dr. G. Cloutier
 C. Patr

ENGLAND

1) Besselaar Clinical Research Unit
 Springfield House
 Hyde Street
 Leeds LS2 9NG

2) Hazleton Europe
 Otley Road
 Harrogate
 Yorks HG3 IPY

3) Huntingdon Research Centre Ltd
 Huntingdon
 Cambridgeshire, PE 18 6ES

4) Inversk Research International Ltd
 Tranent,
 Edinburgh, EH33 2NE
 Scotland
FRANCE

1) Laboratoire d'Etudes de coontroles
 202, Avenue Jean Jaure's 92140
 Clarnart

2) Ce'max (Centre Etude Medicament Analyse Yenobiotique
 575 Avenue de Marechal Juin
 76230 Bois Guillaurne

3) Chretien Pierre
 Adresse Professionelle
 575 Avenue du Marechal Juin
 76230 Bois Buillaurne

GERMANY

1) Zentral Laboratium
 Deutscher Apotheker
 Ginnheimer StraBe 20
 D 6236 Eschborn
 Fax 06196 482367

SWEDEN

1) SRF Forvaltnings AB
 S-122 88 Enskede,
 Sweden
 Phone Int. + 46 8 39 9000
 Fax. 468399158

2) Stockholm Care Ab
 P 0 Box 12134
 S-10224 Stockholm,
 Sweden
 Phone Int. + 44686722400
 Fax No. + 468656 1299
3) Sweden Health AB
 P O Box 70314
 S 10723 Stockholm
 Sweden
 Phone Int. + 468702 4850
 Fax + 468702 4855

4) SMA
 PO Box 5610
 S- 114 86 Stockholm ,
 Sweden
 Phone Int. + 4687903300
 Fax + 46820718

U.S.A.
Person to contact:
1) Alta Analytical Laboratory Inc, John W. Cornacchin, Ph.D.
 5070 Robert J. Mathews Parkway
 F1 Dorado Hills, C.A. 95762
 U.S. A.
 Tel (916) 933-3640
 Fax (916) 933-0940

2) Analytical Development Corporation Virgil Gary Tyc
 4405 North Chestnut Street
 Colorado Springs, Colorado 8OQCY7
 U. S. A.
 Tel : (719) 260-1711
 Fax: (.719) 260-0695

3) Anapharm Inc. MareLeBel. Pharm D, FCCP
 2562 Boulevard Laurier
 CP 36014
 Saint Foy, QC Glv 3W7
 Canada
 Fax : (418) 6556-30656
4) Battollo
505 King Avenue
Columbus, Ohio 43201-2693
U.S.A.
Tel: (614)424-5166
Fax (614)424-3268

Merrils R. Osheroff, Ph.D.
Senior Program Director
Preclinical drug development
health Division

5) BAS Analytics
1205 Kant Ave.
West Lafayette
Indiana 47906
U. S. A.
Tel: (317) 403-4527
Fax : (317) 497-1102

Ronald E. Shoup, Ph.D.
President

6) Bioanalytika Laboratories Inc.
2300 Englert Drive. Suite. A
Durban. N.C., 27713
U, S. A.
OR
P.O. Box 12362
Research Triangle Park, N.C. 27709
U. S. A.
Tel : (919)363-5242
Fax: (919) 361-2179

Micheal T. Sung, Ph.D.
President

7) Bioassy Laboratory Inc.Fiore
10845 Seaboard Loop
Houston, Texas 77099 Chief Operating Officer
U. S. A.
Tel '(713) 495-6996
Fax- (713) 575-6996

P. Talarico, Jr
President

8) Biodevelopment Laboratories Inc.
30,Nvleniorial Drive
Director-Business Development
Cambridge, Massachusetts 02142 U. S. A.,
Tel: (617) 234-5229 Fax: (617)234-5211

Cindy J. Levy M.B.A.
Associate
9) Biopharmaceutical Research Consultants, Inc. Jiann-Ping 14su, Ph.D.,
4600 Stein Road, Suite B Vice president, Operations
Ann Arbor, MI 48105
U. S. A.
Tel: (313)663-4440
Fax:(313)663-7797

10) Chicago Center For Clinical Research Kathleen B. Brennan
5 15 North State Street, Suite 2700 President, Chief Operation Officer
Chicago, IL 60610-4324
U. S. A.
Tel: (312) 494-2201
Fax:(312)494-2211

11) Guidelines, Inc. David M. Cohen, Ph.D.
10320 USA Today Way President
Miramar, Fl. 33025
U.S.A.
Tel: (305)433-7480
Fax:(305)432-9015

12) Harris Kyle McAllister
624 Poach St-root Business Development Specialist
P.O. Box 80837
Lincoln, NE 09501
U.S.A.
Tel: (402)437-4808
Fax (402) 476-7598

13) Huntingdon Research Centor LTD Stephen C. Lewinton, MSc
P O Box 2, Huntingdon, Cambs
PE18 6ES England
Tel:44 480 890 431
Fax- 44 480 990 693
14) International Clinical Research Corporation Kevin L. Keim, Ph.D.
5160 Carroll Canyon Road Executive Vice President
San Diego, California 92121-1775
U. S. A.
Tel:(619) 552-050.5
Fax:(619) 552-8596

15) International Medical Technical Consultants, Inc-(TMTCI) Ron Heinicke, M.S.
16300 College Boulevard Director, Impatient Service
Lenexa, Kansas 06219
Tel: 913) 599-4100
Fax:(913) 599-0344

16) Irvine Analytical Laboratory, Inc. Assad Kazerniny, Ph.D.
15375 Barrania Parkway Laboratory Director
Building 1, Suite 112
Irvine, California 92718
U. S. A.
Tel:(714) 727-3484
Fax:(714)727-3584
GUIDE LINES ON DRUG BIOEQUIVALENCE REQUIREMENTS IN THE GCC COUNTRIES